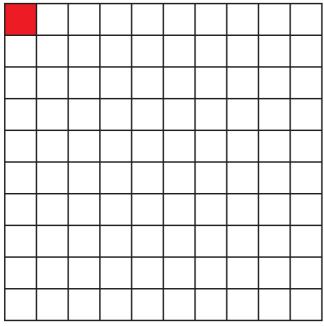

Representing Decimals

(page 1 of 2)

In each of the following examples, the whole square has been divided into equal parts and the amount shaded is named.

Math Words

- tenths
- hundredths



This square is divided into 10 parts. One out of the ten parts is shaded. Amount shaded:

one tenth

fraction: $\frac{1}{10}$

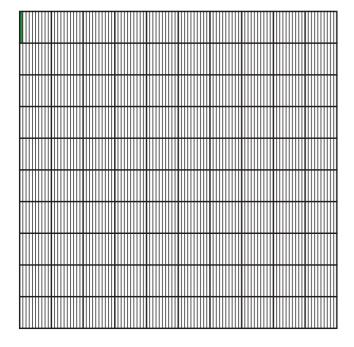
decimal: 0.1

This square is divided into 100 parts. One out of the hundred parts is shaded. Amount shaded:

one hundredth

fraction: $\frac{1}{100}$

decimal: 0.01

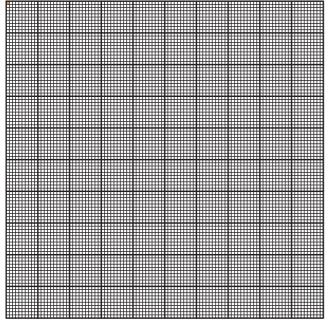

Representing Decimals

(page 2 of 2)

In each of the following examples, the whole square has been divided into equal parts and the amount shaded is named.

Math Words

- thousandths
- ten thousandths



This square is divided into 1,000 parts. One out of the thousand parts is shaded. Amount shaded:

one thousandth

fraction: $\frac{1}{1000}$

decimal: 0.001

This square is divided into 10,000 parts. One out of the ten thousand parts is shaded. Amount shaded:

one ten-thousandth

fraction: $\frac{1}{10000}$

decimal: 0.0001

Can you prove that the thousandths square is divided into one thousand parts without counting them?